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Abstract  
Statistical learning, the process of tracking distributional information and discovering embedded 
patterns, is traditionally regarded as a form of implicit learning. However, recent studies proposed 
that both implicit (attention-independent) and explicit (attention-dependent) learning systems are 
involved in statistical learning. To understand the role of attention in statistical learning, the current 
study investigates the cortical processing of prediction errors in speech based on either local or 
global distributional information. We then ask how these cortical responses relate to statistical 
learning behavior in a word segmentation task. We found ERP evidence of pre-attentive processing 
of both the local (mismatching negativity) and global distributional information (late 
discriminative negativity). However, as speech elements became less frequent and more 
surprising, some participants showed an involuntary attentional shift, reflected in a P3a response. 
Individuals who displayed attentive neural tracking of distributional information showed faster 
learning in a speech statistical learning task. These results provide important neural evidence 
elucidating the facilitatory role of attention in statistical learning.  
 
Highlights: 

• The current study elucidates the role of attention in statistical learning 
• Monitoring of local probabilities engaged an automatic pre-attentive process (MMN)  
• Global distributional information modulated expectation to the local probability 
• A larger P3a response was associated with faster online learning in a word segmentation 

task 
• Involuntary attention to statistical information facilitates statistical learning 
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Introduction 

Humans are equipped with remarkable sensitivity to frequencies, regularities, and 

variabilities of the information encountered in their environments. The process of detecting 

statistical patterns embedded in the input, known as statistical learning (SL), is posited as a 

foundational theoretical account for a wide range of complex human behaviors, including language 

acquisition, category learning, and perception (Aslin & Newport, 2014; Erickson & Thiessen, 

2015; Frost, Armstrong, Siegelman, & Christiansen, 2015). In a typical SL paradigm, people learn 

arbitrary associations between stimuli through passive exposure to streams of information 

embedded with certain statistical patterns (Fiser & Aslin, 2001; Saffran, Aslin, & Newport, 1996). 

After a brief period of exposure, participants can correctly identify which patterns were repeatedly 

presented during the exposure phase without conscious awareness of this knowledge. Successful 

implicit learning of statistical patterns has been demonstrated with a wide range of stimuli such as 

visual sequences (e.g.,  Fiser & Aslin, 2002), auditory tone sequences (e.g., Saffran, Johnson, 

Aslin, & Newport, 1999), and audiovisual sequences (e.g., Seitz, Kim, Wassenhove, & Shams, 

2007) in infants, older children, and adults.  

An important feature of SL is that it can occur in the absence of instruction or conscious 

attention to underlying patterns, such as when stimuli are presented passively without an explicit 

task (Fiser & Aslin, 2001; Fiser & Aslin, 2002; Saffran et al., 1999) or when participants are 

engaged in an unrelated cover task (Saffran et al., 1997; Turk-Browne, Jungé, & Scholl, 2005; 

Turk-Browne, Scholl, Chun, & Johnson, 2009). However, recent studies have found that sufficient 

attentional resources available for particular stimuli appear to be necessary for successful statistical 

learning, measured both with online response time and offline recognition accuracy (Toro, Sinnett, 

& Soto-Faraco, 2005; Turk-Browne et al., 2005), even without explicit awareness of the acquired 
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statistical patterns. For example, Toro and colleagues (2005) manipulated the task demand during 

a speech SL task. Half of the participants were asked to passively listen to the speech stream, while 

the other half were asked to perform a concurrent task. When the concurrent task was more 

demanding or within the same sensory modality as the speech stream, participants were incapable 

of identifying the words following the embedded pattern, indicating that at least some attentional 

resources must be available and directed to the speech stream for successful word segmentation. 

Similarly, Turk-Browne, Junge, and Scholl (2005) found that visual SL outcome is modulated by 

selective attention using familiarity judgement accuracy and response time measures. These results 

indicate that both implicit (i.e., attention-independent) and explicit learning (i.e., attention-

dependent) systems operate alongside each other during SL (Batterink, Reber, Neville, & Paller, 

2015). However, most evidence supporting the importance of attention in SL comes from 

reflection-based tests of learning, where participants are required to reflect on what they have 

learned and make explicit decisions about test stimuli. These reflection-based tests are problematic 

as they introduce additional noise across individuals (Siegelman, Bogaerts, & Frost, 2017) and 

thus underestimate the effects of learning in SL studies relative to processing-based measures (e.g., 

Batterink et al., 2015; Vuong, Meyer, Christiansen, & Kau, 2016). These behavioral measures are 

also problematic as they represent the final result of a complex chain of multiple operations that 

may include perceptual/cognitive mechanisms, response selection, and motor preparation and 

execution (Daltrozzo & Conway, 2014; Daltrozzo et al., 2017). 

Neurophysiological measurements offer a great opportunity to disentangle the respective 

correlates of attention and SL without influence of conscious response. Generation of expectations 

from structured patterns is inherent to SL and is particularly important for learning information 

that is distributed temporally (Conway, 2020). Prediction has been primarily studied in oddball 
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paradigms, where expectations are built on repetitions of stimuli, or the relative frequency of 

exemplars in the input. Decades of research has documented the neural responses to violations of 

auditory expectations, a mismatch negativity response (MMN) between 100 and 250 ms after the 

stimulus onset followed by a later neural response labeled as the P3 complex. The MMN reflects 

a pre-attentive, nonconscious response to an auditory stimulus deviance occurring in the 

concurrent and local context (Chennu et al., 2013; Risto Näätänen, Tervaniemi, Sussman, 

Paavilainen, & Winkler, 2001; Paavilainen, 2013), where explicit attention to the auditory stimuli 

is not required (Alho, Woods, & Algazi, 1994; Van Zuijen, Simoens, Paavilainen, Näätänen, & 

Tervaniemi, 2006). Importantly, the MMN appears to be only sensitive to violations of expectation 

based on transient auditory experiences (local information), but not to violations of auditory 

prediction that accrues over time (global information; (Pegado et al., 2010; Wacongne et al., 2011). 

The transient nature of the MMN is further supported by findings that MMN responses were 

drastically reduced when the presentation rate was slowed down (Pegado et al., 2010). From these 

studies, it is evident that the MMN is a marker of perceptual auditory prediction, or learning from 

transient sensory inputs; however, the MMN amplitude can be modulated by attention when it is 

explicitly directed towards the global pattern.  

In contrast, the P3 was found to be modulated by mnemonic prediction, a process based on 

accumulated information perceived over a longer period of time (Bekinschtein et al., 2009a; 

Chennu et al., 2013; Squires, Squires, & Hillyard, 1975; Sutton, Braren, Zubin, & John, 1965). 

Crucially, the P3 has been associated with an attentional shift to stimulus changes, which relies on 

continuous updating of one’s memory trace (Bekinschtein et al., 2009a; Donchin & Coles, 1988; 

Sergent, Baillet, & Dehaene, 2005). It has been found that an explicit search for auditory 

“oddballs” of global statistical patterns leads to a protracted P3 response, whereas an explicit 
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search for auditory “oddballs” of local statistical patterns leads to shorter and sharper P3 responses 

(Chennu et al., 2013; Bekinschtein et al., 2009). Importantly, when no attention is required during 

the task, or when participants are engaged in a cover task, no P3 effect is elicited by the global 

pattern violations (Wacongne et al., 2011; Bekinschtein et al., 2009). Therefore, the P3 reflects a 

conscious, top-down attentional shift to the prediction errors derived from the regularities 

distributed over an extended period of time (Van Zuijen et al., 2006). While the P3 is the most 

common nomenclature used to refer to this late positive component, the P3 effects reported in 

these studies are typical P3b responses, distributed across temporal-parietal scalp sites. 

Alternatively, the P3a is a more frontally distributed component. These effects reflect task-related 

explicit control of attention (Polich, 2007).  

One caveat of these studies is that the global information differed from the local 

information both in the temporal scale of its distribution (minutes vs. seconds) and in the 

complexity of the statistical pattern. The global probability is manipulated on the level of 

conditional statistical information, that is how likely a multi-tone phrase is to occur over an 

extended period of time, while information related to the local probability is distributional 

statistical information, that is how likely a particular tone occurred in the local context. Evidence 

from behavioral work suggests independent learning processes underlie conditional and 

distributional statistical learning (Endress & Bonatti, 2007; but see Thiessen, Kronstein, & 

Hufnagle, 2013 for an alternative account). Therefore, the context by which attention is required 

remains opaque: is it the gradual nature of learning, the complexity of the statistical pattern, or 

both? Regardless, these findings suggest that the attention-dependent system plays a key role in 

conditional statistical learning, where learning depends on the gradual accumulation of co-

occurring information over a protracted period of time. Yet, the vast literature in implicit statistical 
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learning has presented paramount evidence suggesting learning can be achieved without explicit 

attention towards the stimuli. 

 The current study aims to address this paradox by manipulating the temporal scale of 

distributional information. We ask whether processing local and global distributional information 

involves a pre-attentive (MMN) or an attentional process (P3), and how neural prediction based 

on distributional information is related to higher-level conditional statistical learning?  

 Our research addresses the following gaps in the literature. First, existing evidence for the 

dissociation between the MMN and P3 during processing of statistical information rely on designs 

which confound two dimensions of hierarchy: the complexity of the statistical regularity 

(distributional vs. conditional) and the temporal delay of the distribution (local vs. global). As a 

result, it is not clear whether the P3 effect represents the necessity of attention for learning 

conditional statistical patterns, learning patterns distributed over a longer period of time, or both. 

In our study, we remove the confound by only focusing on the temporal delay of the distribution 

(local vs. global). We ask how the MMN and P3 are modulated by graded probability of 

occurrence. Second, previous studies demonstrated the necessity of attention when learning 

regularities distributed across an extended period of time by contrasting tasks with and without an 

explicit target-detection component. In this study we sought to investigate the role of involuntary 

attention in a passive oddball paradigm with speech stimuli. Specifically, we ask whether the P3a, 

a fronto-parietal distributed ERP component which reflects involuntary attention shift to highly 

salient stimulus (Polich, 2007), can be modulated by local or global distributional statistical 

information. This approach is more ecologically valid, as a passive paradigm will be more suitable 

for future studies involving developmental comparison or special populations. Finally, current 

study is the first to examine the relationship between neural prediction and statistical learning. We 
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ask whether attention-dependent or attention-independent neural prediction relates to statistical 

learning outcomes. We relate individual differences in a word segmentation task measured by both 

online and offline learning measures with the neural indices of prediction measured by ERPs. 

2. Methods  

2.1 Participants 

Forty-five adults (mean age = 22.76 years, SD = 3.02 years, range = 18.1—34.6 years, 11 

males) participated in this study. All participants were right-handed, native English speakers, with 

no history of neurological or psychiatric disorders, or brain damage. All had average or above-

average non-verbal intelligence (age-based standard score > 85) as measured by the Matrices 

subtest (mean = 107.84, SD = 12.89) of the Kaufman Brief Intelligence Test (KBIT-2; Kaufman 

& Kaufman, 2004), and had average or above average vocabulary as measured by the Picture 

Vocabulary Test (PVT; mean = 114.2, SD = 13.35, range = 91-149) of the NIH Toolbox (Gershon 

et al., 2013). All participants gave written consent to participate, in accordance with the 

Institutional Review Board at the University of Delaware. All participants were compensated for 

their participation. 

2.2 Statistical Learning Behavioral Task 

Participants completed an auditory linguistic SL task hosted on a web-based platform (Qi 

et al., 2019; Schneider, Hu, Legault, & Qi, 2020) programmed using jsPsych (de Leeuw, 2015). 

The stimuli, modeled after Saffran, Aslin, & Newport (1996), were composed of a set of four 

triplets, each containing three syllable stimuli which always appeared in the same order. The four 

triplets were pa-bi-ku, da-ro-pi, ti-bu-do, and go-la-tu, were generated by a speech synthesizer in 

a monotone female voice. Each triplet was repeated 48 times and was concatenated in a 

pseudorandom order so that the same triplet did not repeat more than twice across three 
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consecutive triplets. The stimulus onset asynchrony was 480 ms and each triplet lasted 1440 ms. 

The exposure phase had a total duration of 4 minutes and 36 seconds.  

During the exposure phase, participants were told to track a target syllable (i.e., the alien’s 

favorite word) by pressing a button on the keyboard while listening to a continuous stream of 

speech syllables. Participants were randomly assigned to track one of the four syllables in the third 

position of a triplet throughout the exposure phase. For example, the participant may be asked to 

track do, which appeared only in the sequence ti-bu-do. They were instructed to press the spacebar 

on their computer whenever they heard this target syllable. Reaction time (RT) was recorded for 

the participant’s response to the target. 

A two-alternative forced-choice task consisting of 32 test trials immediately followed the 

exposure phase. In each trial, the participant heard a triplet word from the exposure phase and a 

foil nonword. Foil nonwords were comprised of three stimuli from across triplets, where each 

syllable maintained its position in the word but never co-occurred during the exposure phase (pa-

ro-do, ti-la-pi, da-bi-tu, go-bu-ku). Each trial prompted the user to identify which of the two 

sequences had been heard during the exposure phase. 

The linear slope of the RT across trials was calculated, where negative RT slope indicates 

acceleration of response. Keypresses from trials immediately preceding or following the target 

were included. More specifically, to be considered a valid response to the target, the keypress must 

be in the time window of one stimulus before and one stimulus after the target stimulus, that is -

480 ms to +960 ms relative to the onset of the target. A keypress prior to the target is considered 

as anticipation and thus yields a negative reaction time. To control for baseline RT differences 

across individuals, the raw RTs of an individual were first transformed into z-scores. The z-normed 

RTs of an individual were then entered as the dependent variable into a linear regression model. 
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The target trial order (1 to 48) was entered as the independent variable. The reaction time slope 

was computed as the slope of the linear regression line (beta coefficient). Test accuracy was 

calculated as the percentage of correct trials during the two-alternative forced-choice test phase. 

All behavioral analysis of the speech SL task was completed in R (R Core Team, 2017). Seven 

participants were removed from these behavioral analyses: six participants did not complete the 

task and one participant did not have enough valid key presses (< 6 trials) during the exposure 

phase. Therefore, all behavioral and brain-behavior correlational analyses were conducted on the 

remaining 38 participants (mean age = 20.55 years, SD = 2.53 years, range = 18.0—31.0 years, 11 

males).  

2.3 Auditory EEG Oddball Paradigm 

2.3.1 Stimuli. Two female English native speakers produced sounds of “bog” and “dog” 

100 times for each word in a picture-naming task. 100 tokens for each word were digitally recorded 

using a SHURE SM58 microphone and Edirol UA-25EX sound card, sampling at 44.1 kHz. 50 

tokens with better recording quality were chosen for the experiment. The /ba/ and /da/ sound were 

manually cut from the original recordings. The duration of each sound file is 180 ms with ramping 

at the beginning and the end of the syllable. The intensity of each sound was normalized to 70dB.  

Two auditory streams of 1500 stimuli (SOA = 0.7 seconds) were created consisting of three 

conditions: standard, linguistic deviant and non-linguistic deviant (see Figure 1 for visualization 

of EEG paradigm). The standard condition included repeated presentations of the /ba/ syllable 

spoken by one female speaker. The linguistic deviant was a different syllable, /da/, spoken by the 

same speaker as in the standard condition. The non-linguistic deviant was the same syllable, /ba/, 

spoken by a different female speaker. In order to investigate the neural responses associated with 
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differences of abstract features of the stimuli as opposed to merely acoustic differences, we 

included 50 different exemplars for each stimulus type.  

To investigate listeners’ sensitivity to global probability, we manipulated the frequency of 

deviant presentation across two experimental blocks. In both blocks, standard stimuli were 

presented 1200 times, resulting in a global probability of 0.8 (1200 standards /1500 total stimuli). 

In one block, the linguistic deviant occurred at a high frequency (global probability = 0.13; 200 

deviants /1500 total stimuli), while the non-linguistic deviant occurred at a low frequency (global 

probability = 0.06; 100 deviants /1500 total stimuli).  In the other block, the non-linguistic deviant 

occurred at a high frequency (global probability = 0.13), while the linguistic deviant occurred at a 

low frequency (probability = 0.06). The block order was counterbalanced across participants. 

To investigate listeners’ sensitivity to local probability, we manipulated the number of 

standard stimuli preceding deviant stimuli within each global probability condition. In the low 

condition, two standard stimuli were presented before a linguistic or non-linguistic deviant (i.e. 

/ba/ /ba/ /deviant). In the high condition six standard stimuli were presented before a linguistic or 

non-linguistic deviant (i.e. /ba/ /ba/ /ba/ /ba/ /ba/ /ba/ /deviant/). Low and high conditions were 

randomly interspersed in each auditory stream. For each deviant type within a block, one third of 

the deviants were in the local high condition. One third of the deviants were in the local low 

condition. The rest of the deviants were preceded by four standard stimuli. To maximize the 

analysis power, we only analyzed the difference between the high and low local probability 

conditions. The local probability conditions were randomly ordered within each auditory stream.  
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Figure 1. Schematic illustration of the EEG Paradigm. The global probability was 

manipulated across the two blocks. In the first block there were greater repetitions (reps) of the 
linguistic deviant, as compared to the non-linguistic deviant, and this pattern switched in the 
second block. The local probability was manipulated within each block. In the low condition two 
standard stimuli were presented before the linguistic or non-linguistic deviant and in the high 
condition six standard stimuli were presented before the deviant. Block order was counterbalanced 
across participants.  

 
2.3.2 Procedure. Participants were instructed to watch a silent animation movie while 

listening to the auditory streams through a pair of noise-attenuating Cortech ER-2 earphones. 

Participants performed a visual target detection cover task and were instructed to press a button on 

a Cedrus Response Pad RB-840 (Cedrus Corporation, San Pedro, CA) as quickly as possible upon 

seeing a target animation character in the movie. Each experimental block lasted for 17.5 minutes. 

All the visual and auditory stimuli were presented using Presentation® software (Version 18.0, 

Neurobehavioral Systems, Inc., Berkeley, CA, www.neurobs.com). 

2.4 EEG Preprocessing 

EEG was recorded with a 24-channel mobile EEG system (SMARTING, mBrainTrain, 

Belgrade, Serbia) which features a sampling rate of 500 Hz, a resolution of 24 bits, and a 

bandwidth from DC to 250 Hz (SMARTING, www.mbraintrain.com). The amplifier used in this 

study includes a 3D gyroscope and power supply for several hours use (weight 64 grams; size 

82 × 51 × 14 mm). Data is transmitted wirelessly via bluetooth (v2.1) to a nearby paired laptop. 
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Electrode impedances were kept below 10 kΩ. Recordings were online referenced to electrode 

FCz and grounded to electrode AFz. All data was saved using Labrecorder software, which is part 

of the Lab Streaming Layer (LSL).  

All continuous data was high-pass filtered at 0.1 Hz, low-pass filtered at 30 Hz, and re-

referenced to the mastoids. An Independent Components Analysis (ICA; Delorme, Makeig, & 

Sejnowski, 2001) was carried out for artifact removal. The components related to eye-movements 

or muscle activity were identified and removed from the data on the basis of their time-courses, 

frequency spectra and topographies. The data was then epoched from 100 msec before to 600 msec 

after stimulus onset and baseline corrected to the 100 msec before stimulus onset. Trials were 

removed from analysis if the peak-to-peak voltage between 100 ms pre-stimulus and 600 ms post-

stimulus exceeded 100 μV for any of the 24 EEG channels. On average, 1.22 components (SD = 

.40) and 15.11 trials (SD = 12.90) were removed. 

2.5 Event Related Potential Analysis 

Our main interest is to examine whether the MMN and P3a are modulated by the local and 

global distributional information of the deviants. The time windows and electrodes of interest were 

defined by first examining significant differences between all standards and deviants using a 

cluster-based permutation test within the Mass Univariate Toolbox of Matlab (Groppe, Urbach, & 

Kutas, 2011). This permutation test is based on a repeated measures t-statistic using every time 

point at each electrode from 0 to 600 msec post-stimulus, and controls for the family-wise error 

rate across the full set of comparisons. The cluster-based test corrects for the multiple comparisons 

problem by first forming clusters of neighboring extreme t-scores and building a null hypothesis 

distribution from the most extreme cluster statistic (Maris & Oostenveld, 2007). For our cluster-

based permutation, neighbors were established as electrodes within approximately 5.44 cm of one 
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another with a family-wise alpha level of .05. This approach capitalizes on the fact that ERP effects 

are more likely than noise to extend across many adjacent electrodes and time points and is 

probably the most powerful mass univariate procedure for detecting broadly distributed effects 

(Groppe et al., 2011; Maris & Oostenveld, 2007).  

For the time windows and spatial distributions identified by the omnibus cluster 

permutation (standards vs. deviants), the mean amplitude of the ERP was then averaged across the 

significant cluster of electrodes for each deviant condition and extracted for each participant using 

the ERPLAB toolbox in Matlab (Lopez-Calderon & Luck, 2014). The ERP mean amplitudes were 

then submitted to a linear mixed-effect modeling using the lmer function (lme4 version 1.1-20) in 

R (RStudio Team, 2016). The model included fixed effects for domain (syllable vs voice), local 

probability (high vs. low sequence of standards before deviant), and global probability (high vs. 

low frequency of occurrence) with by-subject random intercepts and random slopes for the 

interaction between local and global probability. Effect sizes are represented by Cohen’s d and 

were produced using the lme.dscore function (EMAtools version 0.1.30). 

3. Results 

3.1 Statistical Learning Behavioral Results 

Accuracy on the behavioral statistical learning task was significantly above chance (M = 

60.1%, SD = 12.05%, t(37) = 5.17, p < 0.001). Reaction time slope during the exposure phase did 

not significantly improve across the course of the exposure window (M = .004, SD = 0.02; t(37) = 

0.92, p = 0.36); however, reaction time slope was marginally related to accuracy (R = -0.31, p = 

0.055). Individuals who responded more quickly over the course of the exposure phase were more 

likely to correctly identify words over foils during the test phase. 

3.2 ERP Results 
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We first sought to investigate the overall change in the neural response to auditory deviants 

in order to define the time windows and electrodes of interest for our main analyses. Therefore, 

we compared all deviants to all standards between 0 and 600 msec after the stimulus onset. Next, 

using the time windows and electrodes defined by the first step, we sought to delineate how the 

properties of auditory deviants (linguistic vs. nonlinguistic, high vs. low global probability, and 

high vs. low local probability) modulate listeners’ neural responses to the deviants.  

3.2.1 Deviants compared to standards 

The mass univariate analysis resulted in two significant clusters. The deviants elicited a 

significantly greater negativity than the standards between 60 msec and 214 msec at all electrodes 

except for F7, T7, and Cz, and between 350 and 598 msec at these same electrodes, with the added 

exception of P7 (Figure 2). The early effect uncovered by the cluster permutation is similar in 

temporal and spatial distribution to the canonical MMN (Näätänen, Paavilainen, Rinne, & Alho, 

2007). The late effect, distributed widely, shares the similar temporal characteristic as P3a, but 

with the opposite polarity. Such effect, termed as late discriminative negativity (LDN) or late 

MMN, has also been reported in passive auditory oddball tasks with speech stimuli (Wetzel & 

Schroger, 2014; Bishop, Hardiman, & Barry, 2011; Cheour, Korpilahti, Martynova, & Lang, 2001; 

Korpilahti, Lang, & Aaltonen, 1995).  
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Figure 2. Waveforms recorded in response to standards and deviants. Scalpmaps represent the 
spatial distribution of significant differences identified by the mass univariate cluster analysis in 
both the early (60-214 msec) and late (350-598 msec) time windows between deviants and 
standards. The ERP is a temporal representation of significant differences between deviants and 
standards collapsed across the electrodes identified as a significant cluster by the mass univariate 
cluster analysis (cluster-level p < 0.05). 
 
3.2.2 Contribution of domain, global probability, and local probability 

In order to investigate how the neural responses to auditory deviants are affected by domain 

(non-linguistic vs linguistic), local probability (low vs. high), and global probability (low vs. high), 

the average amplitude in the two significant time windows for each participant was submitted to 

linear mixed effect models. 

The linear mixed effect model in the early MMN time window (60-214 msec), shown in 

Table 1, revealed a main effect of local probability. Participants showed a greater MMN response 

to deviants with a low local probability (deviants following a longer sequence of standards) than 

those with a high local probability (deviants following a shorter sequence of standards; Figure 3a). 

The linear mixed effect model in the late time window, shown in Table 2, revealed a significant 

main effect of global probability (Figure 3b) and a significant interaction between local and global 
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probability (Figure 4a). Participants showed a greater LDN response to deviants with a low global 

probability (deviants occurring less frequently) than those with a high global probability (deviants 

occurring more frequently; Figure 3b). To unpack the interaction between local and global 

probability, post-hoc pairwise analyses revealed that the group effect shifted from a significant 

LDN response to a non-significant P3a trend, as the deviants occurred in less frequent probability 

across global and local contexts. We found a larger and significant LDN response to global 

probability (low vs. high) for the Local (high) deviants (p = 0.01, Bonferroni-corrected p < 0.05), 

as compared to a non-significant global probability effect for the Local (low) deviants (p = 0.33). 

There was also a larger and significant LDN response to the local probability (low vs. high) for 

the Global (high) deviants (p = 0.04), as compared to a non-significant local effect for the Global 

(low) deviants (p = 0.17; see Figure 4b). The effect of domain (non-linguistic vs. linguistic) was 

not significant in either the early or the late time window. 

Table 1. Generalized linear mixed-effects model and effect size (Cohen's d) of individual learners’ 
average early ERP amplitude based on Domain, Local Probability and Global Probability.  

Dependent 
Variables Predictors  b Std. 

Error t value p value Cohen’s d 

Average ERP 
Amplitude in 
Early Time 
Window  

(Intercept)  0.13 0.17  0.77 0.44 -- 

Domain -0.43 0.24 -1.83 0.07 -0.23 

Global Probability -0.34 0.24 -1.40 0.16 -0.19 

 Local Probability -0.51 0.25 -2.07 0.04 -0.31 

 Domain x Global  0.20 0.34  0.61 0.55 0.07 

 Domain x Local  0.41 0.34  1.23 0.22 0.15 

 Global x Local  0.55 0.30  1.58 0.11 0.23 

 Domain x Global x Local -0.01 0.47 -0.02 0.99 -0.002 
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Table 2. Generalized linear mixed-effects model and effect size (Cohen's d) of individual learners’ 
average late ERP amplitude based on Domain, Local Probability and Global Probability.  

Dependent 
Variables Predictors  b Std. 

Error t value p value Cohen’s d 

Average ERP 
Amplitude in 
Late Time 
Window  

(Intercept) -0.07 0.28 -0.25 0.81 -- 

Domain  0.03 0.39  0.08 0.94 0.009 

Global Probability -0.81 0.39 -2.10 0.04 -0.26 

 
Local Probability -0.57 0.39 -1.46 0.14 -0.19 

 
Domain x Global  0.35 0.55  0.65 0.52 0.08 

 
Domain x Local  0.18 0.55  0.34 0.74 0.04 

 
Global x Local  1.17 0.57  2.05 0.04 0.27 

 
Domain x Global x Local -0.39 0.77 -0.50 0.62 -0.06 
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Figure 3. Main ERP effects of a) local probability in the early time window and b) global 
probability in the late time window. a) Deviants preceded by a longer sequence of standards, the 
Local (Low) condition, elicited a greater negativity from 60-214 msec (distinguished by hatching) 
than deviants preceded by a shorter sequence of standards, the Local (High) condition. b) Deviants 
that occurred less frequently, the Global (Low) condition, resulted in a greater negativity from 
350-598 msec (distinguished by hatching) than deviants that occurred more frequently, the Global 
(High) condition. The scalpmap represents the spatial distribution of the electrodes. Electrodes 
highlighted in red were identified as significant in the mass univariate analysis comparing all 
deviants and all standards.  
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Figure 4. Interaction between local and global probability in the late time window. (a) Average 
ERP amplitude by local and global probability conditions. (b) ERP waveforms in each condition. 
The scalpmap represents the spatial distribution of the electrodes. Electrodes highlighted in red 
were identified as significant in the mass univariate analysis comparing all deviants and all 
standards in the late time window. 
 
3.3. Correlation Results 

To clarify how differences in the neural response during this auditory hierarchical 

prediction paradigm related to learning of conditional statistics in speech, we extracted the mean 

amplitude of the effects identified as significant in the early and late time windows based on the 

above analyses. We then conducted a Spearman correlation analysis between each main ERP effect 

and the two SL behavioral measures (RT slope and accuracy). We first asked if the pre-attentive 

neural prediction measured by the MMN in the early time window is related to statistical learning 

outcomes? Greater magnitude of local probability (low vs. high) is significantly associated with 

slower online learning, measured by RT slope (Rho = -0.33, p = 0.04). We next asked whether 

neural prediction in the late time window measured was related to statistical learning outcomes. 

We extracted five ERP measures for each participant: one from the main global probability effect, 

and four from the significant interaction between the global and local probability reported earlier 

(the local probability effect within Global (high) and Global (low) conditions, as well as the global 

probability effect within Local (high) and Local (low) conditions). Among the five correlational 
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analyses, we found one significant result: learners with a larger P3a-like response to local 

probability for Global (low) deviants exhibited faster RT acceleration during the SL task (Rho =-

.42, p = 0.009, Bonferroni-corrected p = 0.05; Figure 5a; see Table 3 for all the statistics). None 

of these ERP markers were related to offline learning measured by accuracy.  

 
Table 3. Spearman correlations between main ERP effects, RT Slope, and accuracy. 
 

MMN ERP Amplitude RT Slope Accuracy 

  Local Effect Rho = -0.33, p = 0.04 Rho = 0.004, p = 0.98 

LDN/P3a ERP Amplitude RT Slope Accuracy 

  Global Effect Rho = 0.19, p = 0.26 Rho = 0.10, p = 0.54 

  Global Effect within Local (High) Rho = 0.20, p = 0.24 Rho = 0.09, p = 0.60 

  Global Effect within Local (Low) Rho = -0.06, p = 0.71 Rho = 0.09, p = 0.60 

  Local Effect within Global (High) Rho = -0.19, p = 0.25 Rho = 0.07, p = 0.67 

  Local effect within Global (Low) Rho = -0.42, p = 0.009 Rho = 0.12, p = 0.49 

 

To further illustrate the relationship between the neural responses to prediction errors and 

individual learners’ statistical learning performance, we divided the participants based on the 

polarity of their local probability effect in the Global (Low) condition: 12 participants exhibited 

an LDN and 26 exhibited a P3a. The P3a group showed significantly faster RT acceleration during 

the exposure phase as compared to the LDN group (t(36) = -8.73, p < .0001; Figure 5b). However, 

the two groups performed similarly during the offline alternative forced-choice task (t(36) = 0.84, 

p = .41; Figure 5c). 
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Figure 5. Greater P3a-like response to local probability is related to faster statistical learning. (a) 
Faster acceleration of RT (more negative slope) is associated with greater P3 response to local 
probabilities in the Global (Low) condition. (b) The P3a group demonstrated significantly faster 
online learning of conditional statistics as compared to the LDN group. (c) The P3a and LDN 
groups showed similar accuracy on the post-training statistical learning task. 
 
4. Discussion 
 

The current study sought to elucidate a paradox in implicit SL research: is an attention-

dependent system critical for statistical learning or can learning be achieved without explicit 

attention towards the stimuli? To address this question, we designed a passive auditory EEG 

oddball paradigm in which we embedded two levels of distributional information in speech: low 

and high frequency of occurrence at the local (across neighboring syllables) and global (across the 

whole speech stream) levels. Our findings indicate that monitoring local probabilities engages an 

automatic pre-attentive process, reflected as a mismatch negativity (MMN) response, while global 

distributional information modulates an individual’s expectation to the local probability. As 

auditory oddballs became less frequent and more surprising, participants exhibited a shift from a 
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late discriminative negativity (LDN) response to a P3a response. Individuals who indicated 

attentive tracking of distributional information were also more likely to show faster RT 

acceleration in the statistical learning task.  

In the early processing stage, we found that local probabilistic information modulated the 

MMN amplitude, suggesting neural prediction based on transient auditory inputs is a pre-attentive 

process, graded by the local frequency of occurrence. These results are broadly consistent with the 

classic view that the elicitation of a MMN represents pre-attentive encoding of short-duration 

memory traces (Näätänen et al., 2007). In particular, our finding replicated previous reports that 

increasing repetitions of proceeding standards leads to a progressive enhancement of the MMN 

(Baldeweg, 2007; Haeascfael, Vernon, Dwivedi, Gruzelier, & Baldeweg, 2005), but extend these 

findings to the speech domain. Our findings also suggest that unlike local probabilistic information, 

global probabilistic information was not encoded during this early and pre-attentive process. The 

blindness of the MMN to global patterns can be attributed to the transient nature of the memory 

trace represented by the MMN. Reduced MMN amplitude has been reported in response to 

lengthening the delay between deviants and standards (Pegado et al., 2010). Previous studies with 

deviants in both local and global contexts reported a lack of MMN responses to deviants that 

violated global patterns of conditional statistics (e.g. AAAAB (standard) vs. AAAAA (deviant)) 

(Bekinschtein et al., 2009; Wacongne et al., 2011). Findings from our study confirm that global 

probabilistic information was not processed during this early window, due to its extended 

timescale of memory retrieval, rather than the complexity of the pattern.  

Our individual differences analyses in the early time window showed an intriguing 

relationship between the effect of local probability and online learning behavior during the speech 

SL task. Individuals who were less sensitive to local probabilities, as measured by a smaller MMN, 
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showed faster RT acceleration during the SL task where the knowledge of transitional probability 

was established over an extended period of time. Does better learning of global statistical patterns 

reflect greater inhibition of local probabilistic processing? Our findings are consistent with the 

global interference effect studied in human visual and auditory perception (Bouvet, Rousset, 

Valdois, & Donnadieu, 2011; Navon, 1977; Poirel, Pineau, & Mellet, 2008). Across these 

experiments, accurate identification of the global pattern (e.g., pitch changes over the whole 

melody) comes at a cost to identifying the local pattern (e.g., pitch changes in a three-tone group). 

Likewise, hierarchical models of learning (e.g., Mathys et al., 2014) hint that local and global 

regularities are learned simultaneously, but the long-term updating of the memory trace required 

to track global probabilities has an overarching impact on updating precision associated with the 

local predictions being generated (Fitzgerald & Todd, 2018). Our finding might also suggest that 

processing of local probabilistic information hinders the detection of the global statistical patterns. 

Such a detrimental effect of local distributional information on global pattern learning has been 

reported in the context of rule-based learning. Learners failed to generalize global statistical 

patterns to new items when being overloaded with local distributional information, for example 

through an extended familiarization phase (Endress & Bonatti, 2007; Peña, Bonatti, Nespor, & 

Mehler, 2002). Therefore, our finding supports a competitive relationship between local and global 

probabilistic information, though it does not speak to the direction of the interference. 

In the late time window, the presence of a global effect is consistent with previous reports 

that global probabilistic information is processed later (Chennu et al., 2013; Berkinstein et al., 

2009; Wacongne et al., 2011; Marti, Thibault, & Dehaene, 2014). However, unlike these studies, 

attention was not explicitly directed towards the stimuli in our paradigm. As a result, we observed 

an LDN rather than a P3 response to global probabilistic information. Research in both children 
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and adults indicates that verbal stimuli elicits a later centrally distributed negativity which reflects 

the automatic processing of complex auditory, possibly even linguistic, information (Cheour et al., 

2001; Hill, McArthur, & Bishop, 2004; Korpilahti et al., 1995). The LDN, sometimes also termed 

as a late MMN (e.g., Korpilahti, Krause, Holopainen, & Lang, 2001), has been speculated to 

represent additional (or immature) processing of subtle features of the auditory stimulus (D. V. M. 

Bishop et al., 2011). Although there has not been a consensus regarding whether the LDN reflects 

an attention-dependent or attention-independent process (Horváth, Winkler, & Bendixen, 2008; 

Roeber, Berti, & Schröger, 2003), the fact that the LDN is sensitive to global probability in the 

context of passive oddball paradigms suggests explicit attention to the stimuli is not necessary 

(Bishop, 2007; Wetzel & Schröger, 2014).  

The interaction between the local and the global effects in the late window provides more 

evidence about the role of attention in the processing of distributional information in speech. We 

observed a shift from an LDN to P3a response to probabilistic information as stimuli became less 

expected, suggesting that the global distributional pattern modulates an individual’s expectation 

to the local stimulus. When encountering a locally rare deviant with a relatively more frequent 

global probability, participants consistently showed an LDN response. However, when they 

encountered a locally rare deviant, which is highly unexpected in the global context, the LDN 

effect was replaced by a P3a-like effect with large variabilities across individuals. We found two-

thirds of the participants elicited a P3a response, while the other one-third of the participants 

elicited an LDN response. Similar shifts from an LDN to a P3a were observed for the effect of 

global probability. These results provide neural evidence that the mutual interference effect 

between global and local levels might depend on a top-down attentional process. 
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Individual difference analyses in the late time window revealed a facilitatory role of 

attention in statistical learning. Individuals with a larger P3a response, which indexes a greater 

involuntary attentional shift modulated by the global context, demonstrated more rapid online 

statistical learning. It is likely that flexible top-down control of attention towards salient prediction 

errors allows for more efficient learning during the statistical learning task, through prioritizing 

the global patterns embedded in the speech stream (Zhao, Al-Aidroos, & Turk-Browne, 2013). 

Although selective attention to stimuli is known to boost statistical learning (e.g. Toro, Sinnett, & 

Soto-Faraco, 2005; Turk-Browne, Jungé, & Scholl, 2005), our findings emphasized the 

relationship between endogenous attentional control and real-time statistical learning. However, 

attention is apparently not necessary for statistical learning. Participants, regardless of their ERP 

profiles (P3a or LDN), were equally successful in recognizing the familiar words. These findings 

align well with the view that both the attention-independent and the attention-dependent learning 

mechanisms are at play, both within and across individuals (Batterink et al., 2015; Conway, 2020). 

Walk and Conway (2016) proposed that implicit learning is sufficient for learning unimodal 

sequential regularities (i.e., sequential dependencies between items in the same perceptual 

modality) but that additional cognitive resources such as selective attention or working memory 

maybe required to learn cross-modal sequential patterns. From the developmental perspective, a 

bottom-up implicit-perceptual learning system develops early in life and encodes the surface 

structure of input, while a second system that is dependent on attention, develops later in life, and 

relies to a greater extent on top-down information to encode and represent more complex patterns 

(Daltrozzo & Conway, 2014). Even though endogenous attentional control is not mature in 

children, children show adult-like performance in speech statistical learning measured by offline 

recognition tasks (Raviv & Arnon, 2018; Saffran et al., 1996; Shufaniya & Arnon, 2018). 
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Processing-based measures, such as ERPs and reaction time, will have the potential to unveil the 

developmental shift of weights from automatic to attention-dependent learning mechanisms. 

Taken together, the current study provides important evidence about the facilitatory role of 

attention in statistical learning: while the neural adaptation to local and transient distributional 

information is automatic, computing the global distributional information over a continuous stream 

of stimuli may engage involuntary attentional shift, a process possibly deployed by more 

successful statistical learners. 
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